ご訪問ありがとうございます!
解いた数学の問題をマーク方式にして公表するブログです!管理人のRedchopperです!よろしくお願いします!
今週は方程式と複素数の入試問題です。
今回は2014年京都大学で出題された問題です。
今回の問題について
難易度は☆☆☆です。
判別式の符号を調べれば良いですが、0≦θ<90°の範囲で虚数解が少なくとも1個あることをいうことが難しいです。
難易度表記については以下の記事をご参照ください。
red-red-chopper-mathmatics.hatenablog.com
今回の問題の解説
0≦θ<90°での判別式との判別式のうち少なくとも一方が負になることを言えれば方程式の解のうち少なくとも1個は虚数解であることが言えます。
問題では、前者の判別式を、後者の判別式をとしていますので、この記号を使って話を進めていきます。
となる条件はですので、これをみたすθの範囲はになります。
あとはでであることが言えれば証明完了です。
いかがだったでしょうか?
解く方針を見出すことは難しくなかったです。
方程式の理論をしっかり理解できていれば解ける問題かと思います。
でであることをいうところが一番難しかったです。
それでは!またのお越しをお待ちしております!(^^)/
Twitterで更新を報告しています!フォローよろしくお願いします(・ω・)